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Abstract. Beneath most complex systems playing a vital role in our
daily lives lie intricate networks. Such real-world networks are routinely
represented using graphs. The volume of graph data produced in today’s
interlinked world allows for realizing numerous fascinating applications
but also poses important challenges. Consider for example the friendship
graph of a social networking site and the findings we can come up with
when executing network algorithms, such as community detection, on
this graph. However, the volume that real-world networks reach often-
times makes even the execution of fundamental graph algorithms infeasi-
ble when following traditional techniques. In this short note we summa-
rize our results on the study of two directions that allow for handling large
scale networks, namely distributed graph processing, and streaming graph
algorithms. In this context, we first provide contributions with regard
to memory usage of distributed graph processing systems by extending
the available structures of a contemporary such system with memory-
optimized representations. Then, we focus on the task of community
detection and propose i) a local algorithm that reveals the community
structure of a vertex and easily facilitates distributed execution and ii)
a streaming algorithm that greatly outperforms non-streaming state-of-
the-art approaches with respect to both execution time and memory
usage. In addition, we propose a streaming sampling technique that al-
lows for capturing the interesting part of an unmanageable volume of
data produced by social activity. Finally, we exploit the available data of
a popular social networking site to empirically investigate a well-studied
opinion formation model, using a distributed algorithm.

Keywords: Distributed graph processing · streaming graphs · graph
compression · community detection · opinion formation.

1 Introduction

Real-life systems involving interacting objects are typically modeled as graphs
and can often grow very large in size. A multitude of contemporary applications
heavily involves such graph data and has driven to research directions that allow
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for efficient handling of large scale networks. Two prominent such directions are
distributed graph processing and streaming graph algorithms.

The tremendous growth of the Web graph has driven Google to introduce
Pregel, a scalable platform with an API that allows for expressing arbitrary
graph algorithms. Pregel is a distributed graph processing system that powers
the computation of PageRank and has served as an inspiration to many systems
that adopted its programming model. One such system is Apache Giraph which
originated as the open-source counterpart of Pregel. Giraph is maintained by
developers of Facebook that use it to analyze Facebook’s social graph. Pregel-
like systems follow a vertex-centric approach and address the task of in-memory
batch processing of large scale graphs [26]. Communication details are abstracted
away from the developers that implements algorithms for such systems. The
latter offer APIs that allow for specifying computations with regard to what
each vertex of the graph needs to compute whereas edges serve the purpose
of transmitting results from one vertex to another. The input graph is loaded
on start-up and the entire execution takes place in-memory. Consequently, the
execution of a graph algorithm in a Pregel-like system depends on the available
memory and will fail if the later is not sufficient enough to fit the graph.

The ever-increasing size of real-world networks has also motivated the design
of algorithms that process massive graphs in the data stream model [42]. More
specifically, the input of algorithms in this model is defined by a stream of
data which usually comprises the edges of the graph. Therefore, graph stream
algorithms are a perfect fit for problems dealing with networks that are formed as
we attempt to analyze them, e.g., the network describing the activity taking place
in a social networking site. However, many challenges arise in a streaming setting
that need to be addressed when designing respective techniques. A streaming
graph algorithm processes the stream in the order it arrives and each element
of the stream must be processed immediately or stored as it will not become
available again. In addition, the size of the stream and the speed in which its
elements arrive do not allow for persisting the stream in its entirety. Therefore,
processing cannot occur at a later stage.

In this dissertation we focused on both distributed and streaming graph pro-
cessing techniques. We initially investigated the memory usage patterns that
contemporary distributed graph processing systems adopt. We observed that
graph compression techniques have not been considered in the design of the
representations that distributed systems employ. Therefore, we built on com-
pression techniques that assume centralized execution and provided numerous
novel compact representations that are fitting for all Pregel-like systems. Our
structures offer memory-optimization regardless of the algorithm that is to be
executed, and enable the successful execution of algorithms in settings that state-
of-the-art systems fail to terminate. We continued by studying a problem that
has received considerable attention in the past, yet is still extremely relevant
as previously proposed approaches fail to handle the massive volume of today’s
real-world graphs. In particular, we addressed the problem of community detec-
tion and our contribution was twofold as we proposed both a vertex-centric and



a streaming approach. We followed the trend of seed-set expansion methods in
which small sets of nodes are expanded to communities. Our techniques offer
impressive results with regards to all accuracy, memory usage and execution
time. Next, we considered the stream of real-time activity of a social networking
site and investigated ways of deriving the interesting part out of it based on
network properties. More specifically, we used the interactions of the site’s users
to construct a network of authorities and assess whether each particular element
of activity in the stream is interesting. This approach enables applications in
numerous fields to exploit in real-time the enormous amount of information that
is made available online everyday without being overwhelmed by the volume of
the information. Finally, we investigated yet another field of study in the area
of graph mining, namely opinion formation. We adopted a well-studied model
and employed a distributed graph processing system to evaluate whether the
predicted behavior of the users of a real social network according to this model
matches the actual behavior these users.

Most of these results have appeared in [33–38]. What follows is a brief pre-
sentation of the topics and results of the dissertation, avoiding technical details.

2 Memory-optimized Distributed Graph Processing

The proliferation of web applications, the explosive growth of social networks,
and the continually-expanding WWW-space have led to systems that routinely
handle voluminous data modeled as graphs. Facebook has over 1 billion ac-
tive users [15] and Google has long reported that it has indexed unique URLs
whose number exceeds 1 trillion [2]. This ever-increasing requirement in terms
of graph-vertices has led to the realization of a number of distributed graph-
processing approaches and systems [1, 45, 40]. Their key objective is to efficiently
handle large-scale graphs using predominantly commodity hardware [26]. Most
of these approaches parallelize the execution of algorithms by dividing graphs
into partitions [47] and assigning vertices to workers following the “think like a
vertex” programming paradigm introduced with Pregel [41]. However, recent
studies [26, 13] point out that the so-far proposed frameworks [1, 45, 40] fail to
handle the unprecedented scale of real-world graphs as a result of ineffective,
if not right out poor, memory usage [26]. Thereby, the space requirements of
real-world graphs have become a major memory bottleneck.

Deploying space-efficient graph representations in a vertex-centric distributed
environment to attain memory optimization is critical when dealing with web-
scale graphs and remains a challenge. Related efforts have exclusively focused
on providing a compact representation of a graph in a centralized machine en-
vironment [9, 5, 14, 39]. In such single-machine settings, we can exploit the fact
that vertices tend to exhibit similarities. However, this is infeasible when graphs
are partitioned on a vertex basis, as each vertex must be processed indepen-
dently of other vertices. Furthermore, to achieve memory optimization, we need
representations that allow for mining of the graph’s elements without decompres-



sion; this decompression would unfortunately necessitate additional memory to
accommodate the resulting unencoded representation.

A noteworthy step towards memory optimization was taken by Facebook
when it adopted Apache Giraph [1] for its graph search service; the move yielded
both improved performance and scalability [15]. However, Facebook’s improve-
ments regarding memory optimization entirely focused on a more careful imple-
mentation for the representation of the out-edges of a vertex [15]; the redundancy
due to properties exhibited in real-world graphs was not exploited.

We investigate approaches that help realize compact representations of out-
edges in (weighted) graphs of web-scale while following the Pregel paradigm.
The vertex placement policy that Pregel-like systems follow necessitates for
storing the out-edges of each vertex independently. This policy preserves the
locality of reference property, known to be exhibited in real-world graphs [8],
and enables us to exploit in this work, patterns that arise among the out-edges
of a single vertex. We cannot however utilize similarities among out-edges of
different vertices, for we are unaware of the partition each vertex is placed
into. Our first technique, termed BVEdges, applies all methods proposed in [9]
that can effectively function with the vertex placement policy of Pregel in a
distributed environment. BVEdges primarily focuses on identifying intervals of
consecutive out-edges of a vertex and employs universal codings to efficiently
represent them. To facilitate access without imposing the significant computing
overheads of BVEdges, we propose IntervalResidualEdges, which holds the
corresponding values of intervals in a non-encoded format. We facilitate sup-
port of weighted graphs with the use of a parallel array holding variable-byte
encoded weights, termed VariableByteArrayWeights. Additionally, we propose
IndexedBitArrayEdges, a novel technique that considers the out-edges of each
vertex as a single row in the adjacency matrix of the graph and indexes only
the areas holding edges using byte sized bit-arrays. Finally, we propose a fourth
space-efficient tree-based data structure termed RedBlackTreeEdges, suitable
for algorithms requiring mutations of out-edges.

Our experimental results with diverse datasets indicate significant improve-
ments on space-efficiency for all our proposed techniques. We reduce memory
requirements up–to 5 times in comparison with currently applied methods. This
eases the task of scaling to billions of vertices per machine and so, it allows us
to load much larger graphs than what has been feasible thus far. In settings
where earlier approaches were also capable of executing graph algorithms, we
achieve significant performance improvements in terms of time of up–to 41%.
We attribute this to our introduced memory optimization as less time is spent
for garbage collection. These findings establish our structures as the undisputed
preferable option for web graphs, which offer compression-friendly orderings, or
any other type of graph after the application of a reordering that favors its
compressibility. Last but not least, we attain a significantly improved trade-
off between space-efficiency and performance of algorithms requiring mutations
through a representation that uses a tree structure and does not depend on node
orderings.



3 Uncovering Local Hierarchical Link Communities at
Scale

The neurons in our brains, the proteins in live cells, the powerplants of an elec-
trical grid, and the users of an online social networking service, are all entities
of complex systems that play a vital role in our daily lives. Networks are a
powerful tool for modeling relations and interactions between the components
of such complex systems. Respective real-world networks are often massive; yet
they exhibit a high level of order and organization, which allows the study of
common properties they exhibit, such as the power-law degree distribution and
the small-world structure [46, 19]. Another important property that real-world
networks exhibit is the presence of community structure [24]. At a high level,
communities are groups of nodes that share a common functional property or
context, e.g., two people that attended the same school, or two movies with the
same actor. In several cases communities in a network are distinct; consider for
example the fans of different basketball teams. However, it is often the case that
communities overlap.

Effectively extracting the community structure of a node in a network has
many useful applications, e.g., i) we can provide more informative and engaging
social network feeds by better understanding the membership of an individual
to various organizational groups, and ii) we can suggest common friends of an
individual to connect because they share mutual interests. Early community
detection approaches focused either on grouping the nodes of a network or on
searching for links that should be removed to separate the clusters [20]. However,
these approaches did not consider the fact that communities may overlap, and
ultimately could not provide an accurate representation of a network’s commu-
nity structure. Algorithms that followed [4, 25, 48] allow for nodes to belong to
several overlapping communities by employing techniques such as link clustering,
matrix factorization, and personalized PageRank vectors. Still, these approaches
are not applicable to the massive graphs of the Big Data era, as they focus on
the entire graph structure and do not scale with regards to both execution time
and memory consumption. Recent efforts have therefore shifted the focus from
the global structure to a local view of the network [30–32]. More specifically, such
approaches locally expand a set of target nodes in the community of interest,
instead of uncovering the communities of the entire network.

Seed set expansion approaches employ techniques such as random walks to
estimate the likelihood of a node to participate in the target community, and
manage to scale to large networks [30–32]. These approaches consider that over-
laps between communities are sparsely connected whereas the areas where com-
munities overlap are denser than the actual communities. However, studies of
real-world networks show that two nodes are more likely to be connected if they
share multiple communities in common [49]. Hence, as the overlapping area is
in fact denser than the actual communities, seed set expansion approaches are
driven towards nodes that reside in the overlap. In addition to this, all scalable
methods require multiple seeds to avoid detecting multiple overlapping commu-
nities as a single one. This constitutes a challenge, as it is usually the case that



we are interested in all communities of a single node, instead of seeking one
community involving multiple predefined nodes. Finally, seed set expansion ap-
proaches are shown to perform well when detecting relatively large communities,
whereas high quality communities are in fact small [49].

Here, we focus on the neighbors of a single node in the network, i.e., its egonet,
and aim at extracting the –possibly overlapping– communities of this node. We
build upon the ideas of link clustering [4, 18] and employ similarity measures that
allow for effectively handling densely connected overlaps between communities.
Our intuition is that when grouping pairs of links we should capture the extent to
which a link belongs to multiple overlapping communities. To this end, we utilize
a dispersion-based tie-strength measure that helps us quantify the participation
of a link’s adjacent nodes to more than one community. Our approach is both
efficient and scalable as we focus on local parts of graphs comprising a target
node and its neighbors. As we show through experimental evaluation, we produce
a more accurate and intuitive representation of the community structure around
a node for a number of real-world networks.

4 Community Detection via Seed Set Expansion on
Graph Streams

Graph structures attract significant attention as they allow for representing en-
tities of various domains as well as the relationships these entities entail. Real-
world networks are commonly portrayed using graphs and are often massive.
Despite their size, such networks exhibit a high level of order and organization,
a property frequently referred to as community structure [24]. Nodes tend to or-
ganize into densely connected groups that exhibit weak ties with the rest of the
graph. We refer to such groups as communities, whereas the task of identifying
them is termed community detection.

Community detection is a fundamental problem in the study of networks and
becomes more relevant with the prevalence of online social networking services
such as Twitter and Facebook. Identifying the social communities of an individ-
ual enables us to perform recommendations for new connections. Moreover, by
better understanding the membership of an individual to various organizational
groups, we can provide more informative and engaging social network feeds. In
addition to social networks, community detection is successfully applied to nu-
merous other types of networks, such as biological or citation networks. In the
former, we are particularly interested in inferring communities of interacting pro-
teins, whereas in the latter we wish to uncover relationships between disciplines
or the citation patterns of authors [20].

In the last two decades a plethora of community detection methods has been
proposed [7, 16, 43, 44, 4, 25, 48]. However, these approaches are not applicable
to the massive graphs of the Big Data era, as they focus on the entire graph
structure and do not scale with regards to both execution time and memory
consumption. Recent efforts manage to scale as far as execution time is con-
cerned by focusing on the local structure and expanding exemplary seeds-sets



into communities [30, 32, 33]. Such a seed-set expansion setting can be applied to
numerous real world applications, e.g., given a few researchers focusing on Big
Data we can use a citation network to detect their colleagues in the same field.
However, the space requirements of such algorithms rapidly become a concern
due to the unprecedented size now reached by real-world graphs. The latter have
become difficult to represent in-memory even in a distributed setting [37].

An increasingly popular approach for massive graph processing is to consider
a data stream model, in which the stream comprises the edges of a graph [42].
This is a new direction in the field of community detection and to the best of
our knowledge no prior approach has considered such a setting without imposing
restrictions on the order in which edges are made available [27, 50]. We propose
CoEuS, a novel community detection algorithm that is fully applicable on graph
streams. CoEuS is initialized with seed-sets of nodes that define different com-
munities. As edges arrive, we can process them but we cannot afford to keep
them all in-memory. Therefore, CoEuS maintains rather limited information
about the adjacent nodes of each edge and their participation in the communi-
ties in question. This information is kept using probabilistic data structures to
further reduce the memory requirements of our algorithm. In addition to our
original idea for community detection in graph streams, we propose two algo-
rithms to enhance the effectiveness of CoEuS. The first one focuses on better
quantifying the quality of each edge w.r.t. to a community. The second one is a
novel clustering algorithm that allows for automatically determining the size of
the resulting communities, in spite of the absence of the graph structure.

Our experimental results on various large scale real-world graphs show that
CoEuS is extremely competitive with regard to accuracy against approaches
that employ the entire graph structure and cannot operate on graph streams.
More specifically, CoEuS can process with just a few MBs, graphs that prior
approaches fail to handle on a machine with 16GB of RAM. Moreover, CoEuS is
able to derive the communities in question inordinately faster. More importantly,
CoEuS is able to return its resulting communities on demand at any time as
we process the graph stream. This is particularly important, as even if we could
afford to use space linear to the number of a graph’s edges, no other approach
is able to update communities as new edges arrive with no additional significant
computational cost.

5 Adaptively Sampling Authoritative Content from
Social Activity Streams

The tremendous scale of content generation in online social networks brings sev-
eral challenges to applications such as content recommendation, opinion mining,
sentiment analysis, or emerging news detection, all of which have an inherent
need to mine this content in real time. As an example, the daily volume of
new tweets posted by users of Twitter surpasses 500 million.1 However, not

1 http://www.internetlivestats.com/twitter-statistics/



all generated online social activity is useful or interesting to all applications.
Using Twitter again as an example, more than 90% of its posts is actually con-
versational and of interest strictly limited to a handful of users, or spam [23].
Therefore, applications such as emerging news detection that operate on the en-
tire stream, spend a lot of computational cycles as well as storage in processing
posts that are not very useful.

One way to solve this problem is, instead of processing the social activity
stream in its entirety, to take a sample of the activity and operate on the sample.
Through sampling, our goal is to still capture the important and interesting parts
of the activity stream, while reducing the amount of data that we would have
to process. To this end, one obvious approach is to perform random sampling,
i.e., randomly pick a subset of the activity stream and use that in the respective
application. A more effective approach however, is to sample content published
in the activity stream only from the users that are considered authoritative (or
authorities).2 By sampling the posts of authoritative users from the stream, we
are reportedly [51] more likely to produce samples that are of high-quality, with
limited conversational content and less spam.

The challenge in sampling high quality content from a social activity stream
lies therefore in identifying authoritative users. Existing work deploys white-lists
of users that are likely to produce authoritative content [22, 51] and samples their
activity. Although such approaches have been shown to work well for certain
applications, we will show experimentally that they are unable to cope with
the dynamic nature of a social activity stream where, for example, new users
emerge as authorities and old ones fade out. Other prior efforts on identifying
authoritative users in social networks (not streams) have focused on computing
a relative ranking of users based on network attributes [3, 11, 12, 28, 52]. We
build on the findings of such approaches to identify authorities likely to produce
useful content; our approach is different however, as we cannot presume that the
complete structure of the social network is available, nor that we can afford to
process the network offline.

We operate with the more practical assumption that we have incomplete
access to the social network. In other words, we do not know which users exist
in the network but we simply observe some partial activity from a social activity
stream. Our goal is to produce high quality samples from such streams that will
still be as useful as possible compared to being able to access the entirety of the
social network and the activity within.

We propose Rhea,3 an adaptive algorithm for sampling authoritative social
activity content. Rhea forms a network of authorities as it processes a stream
and includes in its sample only the content published by the top-K authorities in
this network. Given a social activity stream with user interactions (e.g., answers
in Q&A sites or mentions in the case of Twitter) we create a weighted graph
used to quantify user authoritativeness. To deal with the potentially enormous

2 We use terms authoritative users and authorities interchangeably.
3 Rhea was the Titaness daughter of the earth goddess Gaia and the sky god Uranus.

Her name stands for “she who flows”.



amount of items that we encounter in the stream and limit memory blowup,
we construct a highly compact, yet extremely efficient sketch-based novel data
structure to maintain the authoritative users of the network. Our experimental
results with half a billion posts from two popular social networks show significant
improvements with regard to various binary and ranked retrieval measures over
previous approaches. Rhea is able to sample significantly more relevant docu-
ments, with higher precision and remarkably more accurate ranking compared
to sampling based on static white-lists of authoritative users. Our approach is
generic and can be used with any online social activity stream, as long as we
can observe indicators of authoritativeness in the stream.

6 On the Impact of Social Cost on Opinion Dynamics

An ever-increasing amount of social activity information is available today, due
to the exponential growth of online social networks. The structure of a network
and the way the interaction among its users impacts their behavior has received
significant interest in the sociology literature for many years. The availability of
such rich data now enables us to analyze user behavior and interpret sociological
phenomena at a large scale. Social influence is one of the ways in which social
ties may affect the actions of an individual, and understanding its role in the
spread of information and opinion formation is a new and interesting research
direction that is extremely important in social network analysis. The existence
of social influence has been reported in psychological studies [29] as well as in the
context of online social networks [10]. The latter usually allow users to endorse
articles, photos or other items, thus expressing shortly their opinion about them.
Each user has an internal opinion, but since she receives a feed informing her
about her friends’ endorsements, her expressed (or overall) opinion may well be
influenced by her friends’ opinions. This process may lead to a consensus.

The most notable example of studying consensus formation due to informa-
tion transmission is the DeGroot model [17]. This model considers a network
of individuals with an opinion which they update using the average opinion of
their friends, eventually reaching a shared opinion. In [21] the notion of an in-
dividual’s internal opinion is added, which, unlike her expressed opinion, is not
altered due to social interaction. This model captures more accurately the fact
that consensus is rarely reached in real word scenarios. The popularity of a spe-
cific article, for instance, may vary largely between different communities in a
social network. This fact gives rise to the study of the lack of consensus, and
the quantification of the social cost that is associated with disagreement [6]; the
authors here consider a game where the utilities are the users’ social costs and
perform repeated averaging to get the Nash equilibrium. The resulting models of
opinion dynamics in which consensus is not in general reached allow for testing
against real-world datasets, and enable the verification of influence existence.
Investigating game theoretic models of networks against real data is crucial in
understanding whether the behavior they portray depicts an illustration that is
close to the real picture.



We study the spreading of opinions in social networks, using a variation of the
DeGroot model [21] and the corresponding game detailed in [6]. We perform an
extensive analysis on a large sample of a popular social network and highlight its
properties to indicate its appropriateness for the study of influence. The obser-
vations we make verify our intuitions regarding the source and presence of social
influence. Furthermore, we initialize instances of games using real data and use
repeated averaging to calculate their Nash equilibrium. We experimentally show
that our model, when properly initialized, is able to mimic the original behavior
of users and captures the social cost affecting their activity more accurately than
a classification model utilizing the same information.

7 Conclusions

In this dissertation we studied two research directions that allow for handling
large-scale graphs, i.e., distributed graph processing and streaming graph algo-
rithms. Our focus was on improving contemporary distributed systems, intro-
ducing novel techniques for important graph processing problems, and employ-
ing scalable platforms to empirically study real-world networks. We proposed
techniques to efficiently address challenges regarding: i) memory-optimized dis-
tributed graph processing, ii) large scale distributed and streaming community
detection, iii) sampling authoritative content from streams of social activity, and
iv) modeling the behavior of social network users. Our contribution in all above
areas through extensive experimentation is shown to be significant.
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